On the additivity of preference aggregation methods
نویسنده
چکیده
The paper reviews some axioms of additivity concerning ranking methods used for generalized tournaments with possible missing values and multiple comparisons. It is shown that one of the most natural properties, called consistency, has strong links to independence of irrelevant comparisons, an axiom judged unfavourable when players have different opponents. Therefore some directions of weakening consistency are suggested, and several ranking methods, the score, generalized row sum and least squares as well as fair bets and its two variants (one of them entirely new) are analysed whether they satisfy the properties discussed. It turns out that least squares and generalized row sum with an appropriate parameter choice preserve the relative ranking of two objects if the ranking problems added have the same comparison structure. JEL classification number: D71 AMS classification number: 15A06, 91B14
منابع مشابه
ON THE FUZZY SET THEORY AND AGGREGATION FUNCTIONS: HISTORY AND SOME RECENT ADVANCES
Several fuzzy connectives, including those proposed by Lotfi Zadeh, can be seen as linear extensions of the Boolean connectives from the scale ${0,1}$ into the scale $[0,1]$. We discuss these extensions, in particular, we focus on the dualities arising from the Boolean dualities. These dualities allow to transfer the results from some particular class of extended Boolean functions, e.g., from c...
متن کاملA new last aggregation compromise solution approach based on TOPSIS method with hesitant fuzzy setting to energy policy evaluation
Utilizing renewable energies is identified as one of significant issues for economical and social significance in future human life. Thus, choosing the best renewable energy among renewable energy candidates is more important. To address the issue, multi-criteria group decision making (MCGDM) methods with imprecise information could be employed to solve these problems. The aim of this paper is ...
متن کاملProjects performance evaluation model based on Choquet Integral
In most of the multi–criteria decision–analysis (MCDA) problems in which the Choquet integral is used as aggregation function, the coefficients of Choquet integral (capacity) are not known in advance. Actually, they could be calculated by capacity definition methods. In these methods, the preference information of decision maker (DM) is used to constitute a possible solution space. ...
متن کاملAdditivity of maps preserving Jordan $eta_{ast}$-products on $C^{*}$-algebras
Let $mathcal{A}$ and $mathcal{B}$ be two $C^{*}$-algebras such that $mathcal{B}$ is prime. In this paper, we investigate the additivity of maps $Phi$ from $mathcal{A}$ onto $mathcal{B}$ that are bijective, unital and satisfy $Phi(AP+eta PA^{*})=Phi(A)Phi(P)+eta Phi(P)Phi(A)^{*},$ for all $Ainmathcal{A}$ and $Pin{P_{1},I_{mathcal{A}}-P_{1}}$ where $P_{1}$ is a nontrivial projection in $mathcal{A...
متن کاملGENERALIZED FUZZY VALUED $theta$-Choquet INTEGRALS AND THEIR DOUBLE-NULL ASYMPTOTIC ADDITIVITY
The generalized fuzzy valued $theta$-Choquet integrals will beestablished for the given $mu$-integrable fuzzy valued functionson a general fuzzy measure space, and the convergence theorems ofthis kind of fuzzy valued integral are being discussed.Furthermore, the whole of integrals is regarded as a fuzzy valuedset function on measurable space, the double-null asymptoticadditivity and pseudo-doub...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1512.00421 شماره
صفحات -
تاریخ انتشار 2015